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A fluid-fluid interface that joins a solid surface forms a common line. If the 
common line moves along the solid, a mutual displacement process is involved 
and is studied here. Some simple experiments motivate the formulation of the 
basic assumption of the analysis. The basic assumption is a formalization of the 
idea that the fluid-fluid interface rolls on or unrolls off the solid. This forms an 
axiom for the mostly kinematical analysis that follows. The predictions are 
tested through a series of qualitative experiments. The role of the no-slip 
boundary condition a t  the solid surface is discussed. 

1. Introduction 
When an interface between two immiscible fluids joins a solid boundary, a line 

is formed. This line is sometimes known as the three-phase line or the contact 
line; in this study it is referred to as the common line. 

Common lines have often been examined by physical chemists. Whenever the 
systems are viewed as continua, the theories applied are thermostatic and the 
configurations considered are in or near a static equilibrium. In  thermostatics i t  
is customary to model the interfacial region, i.e. the region between two immis- 
cible fluids or between a fluid and a solid, as a smooth two-dimensional (non- 
Euclidean) surface imbedded in three-dimensional space. The surface is endowed 
with an energy per unit area. The system is said to be in thermostatic equilibrium 
if it is in a configuration of minimal energy. This requires that the Young-Dupr6 
equation (Maxwell 1876) must be satisfied as long as the following three properties 
hold. (i) The interfacial energies per unit area vary smoothly. (ii) The surface of 
the solid is smooth. (iii) The solid is rigid. When applied to a two-dimensional 
system (of course, this also applies to three-dimensional systems) such as that 
shown in figure 1, this equation reads as follows : 

7 1 2  cos 81 + YlS  = 72s. 

Here y12, yls, yZs and el are the interfacial energies of the fluid-fluid interface, 
the fluid 1-solid interface and the fluid 2-solid interface, and the contact angle, 
respectively. While a good deal of experimental data has been compiled on 
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FIGURE 1. The region near the common line. 

contact angles and interfacial energies a t  fluid-fluid interfaces for different 
combinations of materials, measurements of the interfacial energies at solid-fluid 
interfaces are of questionable validity (although see Read & Shockley 1950; 
Benson & Yun 1967). This means that the above model cannot be verified by 
substituting experimentally or theoretically obtained values of ylz,  yls, yzs and 

into the Young-DuprB equation and showing that it is satisfied. Hence, even 
from a static point of view the utility and correctness of this model for fluid-solid 
interfaces remain unclear. One direction of research taken by physical chemists 
is to use experimental measurements of 8, and yI2  as a means of deducing the 
molecular structure of solid surfaces (Zisman 1972). While such information is 
important for a complete understanding of the interfacial region, it does not 
seem to lead to a method of making predictions. 

It is very curious that the moving common line has not received more attention 
from fluid mechanicians. There are numerous occurrences in which it plays an 
important role. The common line is central to the application of monolayer 
protective coatings to solid surfaces, and to the deposition of uniform liquid 
layers on paper in the manufacture of photographic film. In  the latter case, 
knowledge of the maximum common-line speed without the entrainment of air 
would be valuable economically. The sloshing of a liquid in a partially filled con- 
tainer, the breaking up of a thin layer of liquid into beads on a solid surface, the 
flowing of rivulets, the type of splashing produced by a rock thrown into a pail of 
water (Worthington 1963), and the flowing of a drop of dew down a blade of grass 
are further examples. In  addition, the operation of transducers such as depth 
meters, used for measuring the amplitudes of small waves on liquid surfaces, 
depends directly on the motion of a common line since their operation hinges on 
how much of them is momentarily submerged in the liquid. Here the shape of the 
meniscus and the velocity of the common line are of great interest. 

However, the problem is a t  present a t  a primitive stage. One cannot merely 
pose and solve a boundary-value problem which contains a free surface since at 
this point it is not even clear what boundary conditions should be imposed in the 
neighbourhood of the moving common line. One difficulty arises with the no-slip 
condition. It is frequently thought that there is an inherent contradiction in 
simultaneously assuming the no-slip boundary condition a t  a solid wall and 
expecting one fluid to displace another fluid there. In  other words, the flow field 
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associated with the moving common line is thought to be incompatible with the 
no-slip boundary condition. As a result, in many situations in which the common 
line is important, devices are used to avoid analysing the flow field in the 
immediate neighbourhood of the common line. 

In  an investigation made by Ludviksson & Lightfoot (1971) of a thin film 
spreading up the sides of a vertical non-isothermal plate partially submerged in 
a pool of squalane, it is stated that, owing entirely to the no-slip condition 
between the liquid and solid wall, hydrodynamics cannot describe the flow in the 
neighbourhood of the leading edge of the fluid. Therefore, the leading edge must 
advance by diffusional processes. However, in their analysis, the diffusional 
process is ignored because it is poorly understood and an ad hoc technique is used 
to extend the analysis up to the leading edge of the liquid film. In  an earlier 
article (Ludviksson & Lightfoot 1968) the rise of a column of liquid in a capillary 
tube is investigated. Here again the flow a t  the leading edge is not investigated; 
the analysis a t  most applies to the thin film of liquid a t  the wall of the capillary 
near the leading edge. (This, of course, assumes that there exists such a thin 
region.) 

Prutow & Ostrach (1971) have studied the movement of the interface formed 
by one fluid displacing a second fluid in a capillary tube. The theory is limited to 
receding interfaces having small contact angles. Their asymptotic analysis 
divides the flow field into an inner and outer region, The inner domain consists of 
zt three-phase region together with an adsorbed (deposited) film on the tube wall. 
This thin film is modelled as a three-dimensional Newtonian fluid. This adsorbed 
layer is assumed present so that the whole problem of one viscous fluid displacing 
another a t  a solid wall is avoided. 

Hansen & Toong (1971) have investigated the mutual displacement of two 
immiscible fluids in a circular capillary tube. An incorrect demonstration of the 
existence of a discontinuity in one of the velocity components is given; i t  is 
assumed that the tangential component of the velocity of the fluid at points on 
the fluid-fluid interface is the same as the common-line speed. This is not neces- 
sarily true. Physical reasons are given why the ‘classical concepts of fluid 
mechanics and surface physics do not satisfactorily describe the solid-fluid-fluid 
intersection region’. As a consequence of these arguments the flow field in 
a ‘vicinity’ of the common line is analysed but the fluid within a distance 6 of 
the common line (6 M lo-5cm) is excluded from consideration. The analysis 
assumes that both fluids are Newtonian, that there is no slip a t  the rigid walls, 
that the velocity field is continuous across the fluid-fluid interface, and that 
there is a jump in the stress tensor a t  the fluid-fluid interface solely due to 
surface tension. The problem is then solved numerically. It is found that the 
curvature of the fluid-fluid interface is large a t  a distance 6 from the wall of 
the tube, so that the tangent to the interface is undergoing rapid changes near 
the wall. This result leads Hansen & Toong to suspect reported experimental 
values of the dynamic contact angle. The analysis presumes that the speed of the 
common line and the tangent of the fluid-fluid interface at  a distance from the 
wall are known. 

A first attempt to deal theoretically with the moving common line was made 
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by Huh & Scriven (1971). The geometry is simplified somewhat by assuming the 
bounding wall to  be rigid and planar. I n  addition, the motion in the neighbour- 
hood of the common line is assumed to be describable by the two-dimensional, 
steady, constant density Navier-Stokes equations subject to the Stokes approxi- 
mation (creeping flow). The fluid-$uid interface i s  assumed to be planar. An 
analytical solution to the associated boundary-value problem is attempted but 
in a strict sense no solution is found owing to their inability to satisfy the condi- 
tion of continuity of the stress tensor across the fluid-fluid interface. Further- 
more, t,he velocity field obtained has the property that the fluid exerts an inJinite 
force on the bounding surface a t  the common line. Their analysis generalizes 
Moffatt‘s (1964) from a vacuum-fluid system to a fluid-fluid one. 

Huh & Scriven clearly realize the deficiencies of the analysis but are unable to  
pinpoint the cause of the defects because their model imposes several strong 
restrictions on the problem, a priori. 

Bascom, Cottington & Singleterry (1964) have looked at the problem of a 
moving common line experimentally. The lower edge of a vertical plate is im- 
mersed in a pool of squalane. Using interferometric techniques, the thickness 
of the thin film of squalane is measured as it climbs up the plate. A ‘very’ thin 
film, which precedes the leading edge and is referred to  as a primary film or foot, is 
found. This film is detected by blowing water vapour onto the surface, and by the 
motion of minute drops of a liquid with a higher surface tension than squalane 
placed on this ‘invisible ’ film. The foot cannot be detected by an ellipsometer for 
the first few hours. However, after 18 h, quantitative measurements show a foot 
several millimetres along and less than 5 0 8  thick. The existence of the foot is 
reported to be due to surface diffusional processes and not to evaporation- 
condensation. The nature of this process is not explained. 

Schonhorn, Frisch & Kwei ( 1966) investigated experimentally the spreading 
of polymer melts on aluminium and mica surfaces. A small drop of a polymer 
(polyethylene and ethylene-vinyl acetate) is placed on a horizontal surface and 
observed for about one hour. It is found in all cases that, as the drop spreads, its 
configuration follows very closely that of a spherical cap. No thin film or ‘foot’ 
preceding the drop on the surface can be detected to within IOpm of the 
‘apparent’ leading edge. 

The purpose of the present study is threefold. (i) By way of simple qualitative 
experiments, the general nature of the motion of the fluids in the vicinity of 
a moving common line will be displayed. It will be seen that one fluid undergoes 
a ‘rolling’ type motion (9  2), while the motion of the other fluid is more intricate. 
This involves fluid very close to the solid wall (or the fluid-fluid interface) being 
transported into the interior of the fluid ( 3  3). (ii) The observations of the qualita- 
tive experiments will be combined with assumptions often made in fluid 
mechanics and it will be shown that the difficulties which have been encountered, 
when attempting to solve specific boundary-value problems, are a direct con- 
sequence of the continuum modelling ($84 and 5 ) .  The difficulties are not a 
consequence of the particular approximate mathematical techniques used. 
(iii) It will also be shown that the no-slip boundary condition and the moving 
common line are kinematically compatible concepts ( Q  3). 
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In  the process of establishing (ii), the point of view taken is that there are 
certain features common to whole classes of such motions associated with the 
moving common line, which necessarily give rise to flow fields with certain 
general properties. In  the following sections some of these properties will be 
derived. In  order to do this no assumptions will be made about the position or 
shape of the fluid-fluid interface. The history of interfacial research is plagued 
by contamination of experimental interfaces and the elaborate modelling of 
interfaces by theoreticians. The properties which will emerge here are independent 
of the structure endowed to any of the interfaces (e.g. constant or variable surface 
tension, surface viscosities, surface elasticities, etc.). In  most of the work, no 
constitutive equation (a relation between stress and other variables) for the bulk 
fluids will be imposed, so that the derived properties of the motion will be charac- 
teristic of Newtonian as well as non-Newtonian fluids. In  fact, in most of the work 
the balance of linear momentum will not be used. In  several parts of the analysis, 
the wall shape is not imposed, so that roughness is not excluded. In  this study 
the existence of a foot preceding the common line is not excluded. If the foot 
exists, has properties and moves forward as a bulk, it, itself, has a front and so 
a common line. The work done here would apply t o  this configuration. If  the foot 
exists as a result of surface diffusion and can be modelled as it ‘surface fluid’, the 
properties of the interface would be modified. But, no assumption concerning the 
properties of the interface is made in the analysis SO that such an occurrence is 
likewise included herein. 

2. The basic assumption of the model 
The problem of the rise of water in a partially immersed capillary tube is 

a classical one discussed in elementary physics books. The final height is predicted 
by balancing the vertical component of the surface-tension force a t  the common 
line (air, water, glass) with the weight of the water column. Implicit in this 
analysis is the assumption that the water makes contact with the inside of the 
tube although i t  safely may be said that molecules of air as well might well be 
found on the water-solid interface. This assumption is reasonable since the 
resulting prediction is in good agreement with experiment. Further, a molecular 
model of the trapped air would scarcely lead to a tractable model for predicting 
the water column height. 

The fluid flow in a neighbourhood of a moving common line will be examined in 
the same spirit. A basic assumption in the analysis to follow is first posed. 

A common line is understood to be the intersection of the interface, which 
divides two mutually displacing materials, with the surface of a solid bounding 
wall. The two displacing materials will be referred to as fluids; the name does not 
mply any restriction on the form of their constitutive equations relating stress 

to the other variables. In the same way, the bounding wall is called a solid. For 
brevity, the displaced fluid will be called Fl, the displacing fluid will be called F2 
and the solid will be called S. The three interfaces that meet to form the common 
line (CL) will be called SFl, SF, and F,F2. 

Basic assumption of the moving-common-line model. In  a Jinite interval of time 

’ 
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either (a )  material points on Fl F, are mapped (forward) onto CL, or ( b )  material 
points on C L  are mapped (backward) onto Fl F,. The terms forward and backward 
are introduced to make later reference easy. 

Implicit in the basic assumption is the notion that material points either arrive 
a t  the wa,ll and make contact or leave the wall after having been in contact. None of 
Fl ‘leaks’ under F, onto SF,. It must then be plausible, as in the case of the 
capillary tube rise, to exclude the existence of a lubrication layer (bulk material) 
of Fl between F, and S. It is emphasized that this model is not suggested for 
any two fluids and solid since not all combinations of such materials exhibit 
moving common lines. 

The distinction between a lubrication layer and the presence of only a ‘few ’ 
molecules is illustrated in a ‘popping’ drop experiment. Let us release a 0.1 cm3 
drop of water into a horizontal tank containing silicone oil. The water drop con- 
tains food dye for visual purposes. The drop remains relatively spherical as it falls 
and appears, to the naked eye, to be fairly spherical for 5-10 s while i t  rests a t  the 
‘bottom’ of the tank. All of a sudden the drop of water ‘pops’ on the Plexiglas 
base and achieves an entirely different configuration; refer to figure 2 (plate 1).  
When the drop reaches the bottom and appears to  be at rest, it is not actually in 
contact with the Plexiglas; a slowly draining lubrication layer separates the drop 
from the Plexiglas base. After this layer of oil has reached some critical thickness, 
a drastic change in configuration of the drop suddenly occurs; the drop ‘pops’ 
down onto the solid, enlarging its area of apparent contact and displaying a 
distinct contact angle at  its margin. It seems reasonable to analyse the ‘popped ’ 
drop by assuming direct contact between the water and the Plexiglas (physical 
chemists would in contact-angle studies) rather than, say, using a Navier-Stokes 
theory for the ‘trapped’ molecules of oil. 

A more detailed view of the ‘popping’ phenomenon can be obtained by using 
a glycerine drop (about 1500 times more viscous than water) to slow down the 
process. Figure 3 (plate 2 )  shows the popping process as a curve dividing two 
distinct types of reflexions. This curve seems to appear after an initial rupture of 
the lubrication layer and then sweeps across the lower surface of the drop. It is 
this change in the reflexion of light that serves to distinguish functionally the 
lubrication-layer case from the contact case. Simple experiments with moving 
common lines allow the same kind of decision. 

The above discussion cannot exclude the existence of Fl molecules on XF, but 
only makes plausible our model of continua F2 and S in contact. In  a practica.1 
sense, a molecular layer of Fl can make its presence felt by altering the interfacial 
energy of XF,. This is allowed in the present analysis. 

The explicit statement of the basic assumption is now examined. Four experi- 
ments will now be described which demonstrate qualitatively that, in finite times, 
material points are either mapped from C L  to FlF2 or to C L  from F,F,. All the 
experiments illustrate the basic assumption for various cases. In  (i), a liquid 
displaces a gas (forward); in (ii), a gas displaces a liquid (forward); in (iii), a liquid 
displaces a liquid (forward); in (iv), a liquid displaces a liquid (backward). Thus, 
a whole class of systems possessing moving common lines is within the realm of 
the present analysis. 

‘ 
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Stand - 
FIGURE 4. (a) Plan view and (b) side view of a drop of honey on 

a Plexiglas surface. 

(i) Let Fl be air, F2 be honey, S be Plexiglas and consider a 'forward' con- 
figuration. About 1 em3 of honey is placed on a horizontal Plexiglas surface. 
A small dye mark, which consists of a honey and a McCormick's food dye mixture, 
is placed by means of a sewing needle on the air-honey interface at the plane of 
symmetry of the honey; see figure 4 (a) .  

The dye mark appears initially to be circular and slowly tends to increase in 
size possibly owing to a surface-tension gradient induced by the presence of the 
food dye. The Plexiglas is tilted and the honey starts moving downward (see 
figure 4 b ) .  The trajectory of the dye mark is photographed from the direction 
indicated in figure 4 (a) .  The camera is inclined a t  a slight angle, pointing down 
towards the drop. As a consequence of the downward tilt of the camera, a mirror 
image of the drop on the Plexiglas surface can be seen. The common line can be 
located by viewing along the line formed by the intersection of the honey-air 
interface with its reflected image; see figure 5(a )  (plate 3). As the honey moves 
forward, so does the dye mark. Throughout, the dye mark roughly retains its 
circular geometry. Finally, in figure 5 ( c )  the dye mark seems to make contact 
with the Plexiglas, and therefore constitutes part of the common line. In  figure 
5 (d), more than half of the dye appears to be in contact with the Plexiglas surface 
and the remaining part is still on FlF2; the reflected image of this latter portion 
makes 1;he mark appear to be a small dark spot. Figure 5 ( e )  shows no dye mark 
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Undyed glycerine Dyed glycerine 

(b) 

Undyed glycerine 7 Dyed glycerine 

FIGURE 6. (a)  Plan view and ( b )  side view of two drops of glycerine. 
One drop is dyed, the other is transparent. 

Undved Dved 

~~ Bee’s wax f 
FIGURE 8. Cross-sectional view of a drop of glycerine which is partially dyed. 

at all. The spot can then be seen from above. The part apparently in contact with 
the Plexiglas remains adhered while the portion of the spot not in contact gets 
sheared by the honey flow. 

It is important to note that the dye mark does not spread out in the direction 
parallel to the Plexiglas surface as it approaches the common line. Material 
points on FIF, have been observed. That is, those points of material (honey) 
marked by the dye and which also lie on the interface (such points probably exist 
since there is a tendency for the dye mark to grow in size) follow a trajectory 
which brings them to the common line in a finite length of time. 

(ii) Let Fl be glycerine, P2 be air and S be bee’s wax. The surface is prepared 
by pouring molten wax into a dish and letting it solidify and cool to room 
temperature. A definite crystalline structure can be observed. Two drops of 
glycerine, one transparent and the other dyed (with McCormick’s food dye) are 
placed side by side on the wax surface; see figure 6. The wax surface is tilted from 
the horizontal, causing the right end to be lower than the left end. After a very 
short time, the two drops merge, whereupon the solid surface is made horizontal 
again; see figures 7 (a)  and (b)  (plate 4). A cross-sectional side view would probably 
look like figure 8. Only one drop of glycerine is now present; it  has approximately 
half of its mass marked by dye while the other half remains transparent. The dye 
tends to diffuse very slowly into the clear portion. The right side of the common 
line of the drop is composed of dyed glycerine, while the left side is composed of 
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Glycerine Stand 2 
FIGURE 9. (a) Plan view of the bottom surface of the container. (b) Side view 

of the container of glycerine and silicone oil. 

clear glycerine. The experiment proceeds by lowering the left end of the wax; see 
figure 7 (c). After a finite length of time it is observed that the entire common line 
is composed of clear glycerine; see figure 7 ( d ) .  This indicates that the dye 
material points, which were located on the right end portion of the common line, 
have moved elsewhere; on careful observation it is found that this material 
moves onto the glycerine-air interface. 

(iii) Let PI be silicone oil, P2 be glycerine and S be Plexiglas. A rectangular 
container made of Plexiglas is placed a t  an angle with respect to the horizontal; 
see figure 9. The container is first partially filled with glycerine and then with 
silicone oil. The photographs in figure 10 (plate 5) are taken from the direction 
indicated in figure 9 and a t  an angle looking down onto the bottom surface. 
A small amount of dye is placed on the glycerine41 interface near the common 
line; see figure 10 (a). The dye is composed of glycerine and McCormick’s food dye, 
the density of which is slightly less than that of the glycerine alone. The right end 
of the container is slowly lowered. It is observed that the common line moves 
forward (to the right) and the dye mark tends to approach the common line; see 
figures 10 (b)  and ( c ) .  

As time progresses the dye mark becomes part of the common line (figure 10 d )  
and finally disappears from sight; it is no longer on the glycerine-oil interface but 
remains adhered to the Plexiglas. Two things should be noted. (a) The shape of 
the mark remains roughly circular as in (i). (b )  The glycerine just beneath the 
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interface moves forward more slowly than the material points on the interface. 
This is evidenced by the thinning of the dye mark a t  its forward position (see 
figure 10 c) . 

(iv) The same system as in (iii) is considered. However,the common line is 
made to move backwards (to the left) by slowly raising the right end of the 
container. First a drop of dyed glycerine is deposited on the lower surface of the 
container, which is initially covered with silicone oil. After a few moments, the 
drop ‘pops ’; for a side view of the fluids, see figure 11 ( d )  (plate 6).  The right end 
of the container is lowered and the clear glycerine moves forward, eventually 
merging with the dyed glycerine as shown in figure 11 (b) .  Now the right end of 
the container is gradually raised (not lowered). As a consequence of the dyed 
glycerine being less dense than the clear part, it is seen that most of the dye 
appears to  flow up the glycerine-oil interface. Despite this occurrence, the portion 
of the dye initially in contact with the Plexiglas remains there as shown in 
figure 11 (c).  As the common line moves to the left, this remaining dye comes off 
the bottom surface. Finally, the entire mark is lifted off the bottom surface as 
shown in figure 11 ( e ) .  This illustrates again that material on the common line at 
one instant in time (the dyed glycerine) appears to  move onto the fluid-fluid 
interface after the elapse of a Jinite interval of time. 

It has been established, through the qualitative experiments, that the common 
line is not a material line (nor a material region), i.e. different fluid points are 
identified with the common line a t  different times. This is the foundation of the 
basic assumption which will be taken as an axiom for all analysis that follows. 

3. Fluid material surfaces emitted at the moving common line 
I n  the previous section, by means of a dye mark, it was seen that one of the 

displacing fluids undergoes a ‘rolling’ type motion. I n  this section we look a t  
the motion of the ‘other’ fluid. It will be shown that if material points on FlF2 are 
mapped onto CL, then a material surface must be emitted from CL into the 
interior of Fl which consists of Fl material points that  earlier resided on FIS. I n  
this instance, F,  is undergoing the rolling motion. The system is allowed to involve 
unsteady flow over a deforming solid wall. I n  fact, the surface of the solid need 
not have a well-defined tangent plane a t  CL. 

Assume the following. 
(i) The basic assumption (forward). 
(ii) The trajectories of the Fl material points and the 8 material point’s located 

on SFl a t  R,  a t  t = 0 are given by 

xF,(t) = lim x(R , t )  for all time, (3 . la )  
R-+R, 
R E Fx 

x,(t) = lim x(R , t )  for all time, (3.1 b )  
R-tR. 
R E S  

where R, is not on CL, x(R, t )  is the deformation mapping of the material and 
R = x(R ,  0). 
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f- 
Motion of the solid 

FIGURE 12. A single ejected surface in a two-dimensional motion with the frame of refer- 
ence fixed to CL. The solid is shown with a dimple a t  C L  but the analysis holds whether 
the solid is flat or deformed. 

(iii) The mass of Fl is conserved with no sources or sinks and with the density 

(iv) The velocity field for the entire system is Lipschitz continuous in a domain 

(v) The fluid does not slip a t  the solid wall. 
It follows that the Fl material points on #F1 are first mapped onto CL and then 

into the interior of Fl. The two-dimensional case is illustrated in figure 12. The 
arrows indicate the trajectories of material points. The solid surfaces in figures 
12-15 have discontinuous tangent planes a t  CL. The analysis allows such a possi- 
bility but does not exclude the case of a flat surface. 

Before proceeding with the demonstration it is worth commenting on the 
meaning of ‘ no slip ’ in (v). To say that a fluid does not slip on a solid surface means 
that a particular fluid material point in contact with a solid must never make 
contact with more than one solid material point, for all time. This does not 
preclude the possibility that a t  some instant the fluid point may leave the solid 
surface. If it  happens that the velocity field is well-defined on the solid-fluid 
interface, then the no-slip condition’reduces to the familiar condition that the 
velocity of the fluid must equal the velocity of the solid at  theinterface. However, 
there exists the possibility (not pathological) that the velocity field is not well- 
defined everywhere along the interface (see § 4). For such a case the first definition 
must be used. This points out the ambiguity in equating the term ‘adherence’ 
with ‘no slip’ (Truesdell & No11 1960, p. 330; Coleman, Markovitz & No11 1966, 
p. 57). The word adherence seems to say more; it seems to imply both no slip and 
the idea that the fluid material point in contact with the solid surface remains 
in contact for all time (Dussan V. 1972). 

The main proof proceeds as follows. Let us follow the trajectory of an Fl and 
an S material point which are both located at  R, at time t = 0. R, may be any 
point on SF, not on CL. We denote their trajectories as xF,(t) and x,(t), respec- 
tively. As a self-consistency check of the above five assumptions we have 

function p =I= 0, m including its limiting values on the boundary of Fl. 

excluding any arbitrarily small neighbourhood of CL. 

xF,(o) = lim lim x(R,t) = lim lim x(R,t) = lim x(R,O) = R, 
1-0 R 2 R .  R 2 R .  t+O R+R. 

R E F ;  R E F ;  R E F ,  

6 F L M  65 
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x,(O) = lim lim x(R, t)  = lim lim x(R, t) = lim x(R, 0 )  = R,. 
t+O R-R. R+R. t+O b R .  

R E S  R E F ’ ,  R E F ;  

The first equality in either of the above equations follows from assumptions 
(ii) and (iv). The second, third and fourth equalities all follow from (iv). Assump- 
tions (ii) and (iv) together with the result of the theorem of Picard-Cauchy 
(Ince 1956, $3.22) implyxPl(t) = x,(t) aslongasx,isnot onCL. Thisisconsistent 
with (v), the no-slip condition. Since CLis moving we know that a t  some particular 
time t, (this depends on the location of R,) the solid point xs(tl) must be on CL. 
It follows that xpl(t) = x,(t) for t < t,. We know that x,(t) for t > t, must be 
located on SF,. Where is xFl(t) for t > t,? There are only four possible locations 
of the F, material point for t > t,. 

(1) It remains attached to the same solid material point, i.e. 

xF1(t) = x,(t) for t > t,. (3.2) 

( 2 )  It is mapped onto F,F,. 
(3) It remains on CL. 
(4) It is mapped into the interior of F,. 
Alternative 1 is impossible because it contradicts (iii). Indeed, a moving CL 

implies that there exists a time t, > t, such that, for some D > 0, 

IxS(t2) -xcL(s, t2)I > D for all s, (3.3) 

where xs(t2) is on F,S, x,(s,t) is the location of C L  and s is the arc length 
along CL. If we assume that (3.2) is correct then it follows that 

However, assumption (ii) implies that  for any E > 0 there exists any > 0 such that 

IXF1(t2) - X ( R  t 2 )  I < 8 
for all R within Fl and satisfying the relation 

In  physical terms this states that  all the F, material located within a distance y of 
R, a t  time t = 0 is mapped to within a distance 8 of xFl(t,) at time t,; since e is 
arbitrary, we may choose e < D .  So we have a situation in which xS(t2) is 
located on F,S by virtue of the motion of CL, xFl(t,) is also located on F2S by 
virtue of (3.2), and all Fl within an y-neighbourhood of R, at t = 0 must also be 
located on F,S at t = t,. This implies that a finite quantity of F, material has zero 
volume a t  t = t,, which in turn implies that p = m a t  CL. This contradicts 
assumption (v). 

Alternative 2 is impossible because it contradicts assumption (i) ; alternative 3 
is also impossible because it contradicts assumption (v). This leaves, as the only 
possibility, alternative 4. So it has been shown that Fl material points originally 
located on SF, must be located in the interior of Fl a t  some later time. 

If the ‘forward’ basic assumption were replaced above by the ‘backward’ 
basic assumption, then similar conclusions would hold for F, rather than F, but 
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f--. 
Motion of the solid 

FIGURE 13. A single injected surface in a two-dimensional motion with the frame of 
reference fixed to CL. The solid is shown with a dimple a t  CL but the analysis holds 
whether the solid is flat or deformed. 

with emitted surfaces being replaced by injected surfaces, i.e. the senses would 
be reversed in the arguments and the flow would look like that pictured in 
figure 13. Here a single injected surface is pictured although, again, several could 
conceivably exist (only one has been observed experimentally). 

The emitted surfaces could be visualized in an experiment by marking a piece 
of Fl adjacent to SF,. Figure 14 shows the evolution of such a neighbourhood. 
The material points { M e :  i = 1, 2 ,3 ,4}  originally reside on XFl and a finite time 
after having passed through C L  reside on the emitted surface interior to Fl. 
Another emitted surface can be visualized in an experiment by marking a piece 
of Fl adjacent to FlF2. Figure 15 shows its evolution, Again, material points 
{MP,: i = 1,2 ,3 ,4}  originally on F1F2 pass through C L  and become part of an 
emitted surface interior to Fl. 

Actual experiments that depict this ‘forward’ case have been performed. 
A schematic drawing of the apparatus is shown in figure 16. The system consists 
of a Plexiglas container with a rectangular base, silicone oil and a mixture of 
60 % water and 40 yo methyl alcohol. The common line formed can be moved in 
either direction. A drop of the alcohol-water mixture containing food dye is 
injected onto the interface between the Plexiglas and alcohol and water. The dye 
remains undisturbed for a time to allow it to diffuse very close to the wall. The 
end of the tank (right-hand end) containing the oil is slowly raised. Hence, Fl is 
the alcohol-water mixture and F, is the silicone oil. C L  moves towards the dye 
mark and when it appears to be touching it has a wedge shape. Figure 17(a)  
(plate 7) shows the mark before touching while figure 17 ( b )  shows it immediately 
after touching. 

The same experiment is performed again with a dye mark on Fl F,. As the dye 
is ejected, from a hypodermic needle, it spreads to form a disk. This probably 
reflects the surface-tension gradient induced by the presence of the dye. As the 
oil end (right hand) of the container is raised, C L  moves to  the left and the dye 
mark moves downwards toward CL. The emitted surface is clearly visible in 
figure 18(c) (plate 8). In this experiment the two emitted surfaces appear to  
coincide i ts pictured in figure 12. 

6-2 
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+.Motion of the solid 

/ / / /  / 

FIGURE 14. The trajectory of a dyed portion of P, initially in contact with the solid surface. 
(a) t = t,. (a) t = t , .  ( c )  t = t8. (d )  t = t4. t ,  < t ,  < t3 < t4. 

The ‘backward’ version of the same system has been examined as well. Here 
C L  moves toward the oil, so that the oil is Fl. An injected surface in P2is expected. 
This is achieved by lowering the oil (right hand) end of the tank. Figure 19 depicts 
the evolution of a spot of dyed F2 on the F2 side of CL. The dye distinctly divides 
into two parts. This seems compatible with the existence of a single injected 
surface in F,. 

These demonstrations should not be taken as ‘experimental proof’ of the 
validity of assumptions (i)-(v); but rather as evidence that they are self- 
consistent. Other models can give rise to observations similar t o  figures 17 and 18; 
refer to Dussan V. (1972, pp. 90-93). 

Figures 12 and 13 resemble graphs given in Huh & Scriven (1971). In  order to 
examine a boundary-value problem, they impose many assumptions. It is 
unclear which parts of their solution are realistic owing to the fact that the normal 
stress boundary condition is not satisfied a t  the fluid-fluid interface and infinite 
forces are predicted. The present analysis shows that the existence of emitted 
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F2 Fl 

/ /  / 
ion of the solid 

/ / /  / 

FIGURE 15. The trajectory of a dyed piece of Fl initially in contact with the 
fluid-fluid interface. (a )  t = t,, ( b )  t = t,. (c) t = t3. (d) t = t6. t ,  < tz < ts < ta. 

Air 

Alcohol and water Oil 

FIGURE 16. The alcohol-water and oil system with a dyed spot. 

(injected) surfaces is a kinematical necessity, i.e., independent of conservation 
of linear momentum, and a consequence of a set of precisely stated assumptions. 
Huh & Scriven's analysis contains these assumptions; therefore, the resemblance 
in the figures is inevitable. 

It has been shown that the no-slip boundary condition and a moving common 
line are kinematically compatible concepts. 



86 E. B.  Dussan V .  and 8. H .  Davis 

FIGURE 19. Two-dimensional illustration of the experiment. The dye mark at t = t, con- 
sists of alcohol, water and food dye. The deformation of originally one piece of alcohol and 
water dye as the common line moves forward the oil. An injected surface is indicated. 
(a) t = t,. ( b )  t = t,. ( c )  t = t3. (d )  t = t4. t, < t ,  < t3 < t4. 

4. The velocity field at C L  is multi-valued 
If, in addition to the assumptions of the previous section, it is assumed that 

(i) the solid surface is rigid and planar and (ii) PIP2 and the ejected (injected) 
surface are sufficiently smooth, then the velocity field at CL is multi-valued. The 
important additional restriction here is that the solid be rigid; the planarity 
assumption is made for convenience. 

Consider a rectangular Cartesian co-ordinate system that moves with CL. The 
origin is a t  C L  and the solid moves past with velocity U = Ui + Wk. The x direc- 
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tion is along the wall, the y direction is normal to the wall and into the fluid while 
the x direction lies on the wall along the local CL tangent. The unit vectors in the 
(x, y, z )  directions are denoted by (i, j, k).  C L  is assumed to be moving normal to 
itself so that U + 0. Except for isolated points, it  is sufficient to assume that 
U =f= 0. The fluid velocity field is denoted by u(x, t )  = (u, v, w). 

The existence of a multi-valued velocity field u a t  x = 0 can be seen by showing 

lim u(x, t )  that the limit 
x-to 

evaluated along {SF,: i = 1,2}, and either FlF2 or the ejected (injected) surface 
differ. 

Assume that either F,F, or an ejected (injected) surface can be represented by 
an equation of the form F ( x ,  t )  = 0, where F has continuous first derivatives up 
to and including the boundary. This implies that the speed of propagation c and 
the unit normal n of the surface are well-defined and are given by the following: 

c = -- (VFI, n = VF/IVP/.  "I at 

In  addition the following limits exist: 

lim c(x, t )  = c(0,  t ) ,  

lim n(x,t) = n(0,t). 

x+o 
x € { F = O }  

x-to 
x E { F  = O} 

(4.1 a )  

(4.1 b )  

A material point on F = 0 remains on F = 0 as long as it is not on CL. Hence, 

&+uF,+vF~+wC = 0 ( 4 4  

for all non-zero x on P = 0. A material point on {AF+: i = 1,2> remains there as 
long as it is not on CL. Since there is no slip allowed, 

(4.3) u(x, 0, z, t )  = U = Ui + Wk 
for all x on the solid surface, excluding CL. 

It follows from (4.2) that on F = 0 

u(x, t )  = (u, - [Ft + UFZ + w q  P;1, w). (4.4) 

c(0 , t )  = 0, k.n(O,t) = 0. (4 .5a,  b )  

From the definition of the co-ordinate system it follows that for all time 

Hence, from (4.1) and (4.5) it follows that 

and 

lim c(x,t) = 0 
X 4  

xE{F=O) 

lim n(x,t) . k = 0. 
X 4  

xe{F=O}  

If all these facts are brought together, the two limits 

L, = lim u(x,t) 
x-to 

xE{F=O) 

(4.5c) 

( 4 . 5 4  
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FtFt 

I Ejected surface 

+- 
Motion of the solid 

FIGURE 20. This is the motion on the 2, y plane at z = 0. 

and L, = lim u(x, t )  

can be evaluated: 

x-to 
y=O 

L, = lim ( u , a u ,  n . i  w), 
x+o 

xe(F=O}  

(4.6a) 

L, = ( U ,  0) W ) .  (4.66) 

There are three distinct cases to examine. 
Case I. n . i + 0, n . j + 0 a t  x = 0. This implies that the instantaneous contact 

angle 8 =k 0, &IT, IT. 
Take F = 0 as F, F,. Equation (4.6a) shows that the x and y components of L, 

are either both zero or both non-zero. Since it is assumed that U + 0 in (4.6 b) ,  i t  
follows that L, =+= L,. 

Case 11. n . i + 0, n . j = 0 at  x = 0. This implies that the instantaneous contact 
angle 8, = in. 

TakeF = 0 asF,F,.The y components (4.6a) and (4.6b) can onlybe compatible 
if u = 0, in which case the x components are not. Hence, L, + L,. 

Case 111. n . i  = 0, n .  j $: 0 a t  x = 0. This implies that the instantaneous 
contact angle 8, = 0, IT. 

If F = 0 is taken to be Fl F,, it  is possible for L, = L, but if F = 0 is taken to be 
theejected (injected) surface, thenL, + L,. This situationisillustratedinfigure 20. 

The x component of L, is merely U with U < 0. The x component of L, along 
the ejected surface is necessarily non-negative. Hence, L, =+ L,. 

Owing to relations (4.1b) and ( 4 . 5 4 ,  i t  is impossible for both n . i  = 0 and 
n . j  = 0 to hold. 

5. The forces exerted by the fluids in the neighbourhood of the common 

It has been shown that the basic assumption together with the no-slip condition 
on a rigid bounding surface necessarily give rise to a discontinuous (multi-valued) 
velocity field a t  CL. It is easily seen that this type of discontinuous velocity field 

line 
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I 

CL 

FIGURE 21. The frame of reference is at rest with respect to the common line. The angles 
Qo and (Dl are defined such that for any point (T ,  6') E D  we have Qo < 6' < Ql. The angle 
el is between the tangent to C,  a t  the common line and the tangent to C, at the common 
line. 0 < 19, < n. 

must necessarily possess gradients that are unbounded a t  CL. If the fluids have 
constitutive relations (equations which give the explicit dependence of the stress 
tensor) that involve the strain rate tensor, then there exists the possibility that  
the stress tensor must also be unbounded a t  CL.  This must occur, for example, 
if the fluids are Newtonian. An unbounded stress tensor, in itself, is not worri- 
some. There exist physical situations where the force distributed over a small area 
is replaced by a force acting a t  a point or a line. (This implies an unbounded stress 
tensor.) This can make good sense in that the mathematical model can predict 
values of physically measurable quantities, such as the displacements, velocities 
and forces, which agree well with experiment. However, it is also possible that 
an unbounded stress tensor may give rise to  an unbounded force. Such a mathe- 
matical theory then may be considered physically unrealistic, a t  least near the 
singularity. 

I n  this section the forces exerted by incompressible fluids undergoing two- 
dimensional steady motion will be examined. The velocity field is assumed to be 
(a )  discontinuous at the common line (as a result of 34) and (b)  representable in 
a given general form. The result is that an integral I(q) is unbounded. When the 
fluid is Newtonian, l ( q )  is the tangential component of the force exerted by 
the fluid on a planar surface that lies totally within the fluid and extends up 
to  CL.  

Consider a bounded domain, shown in figure 21, which lies totally within one 
of the fluids, say Fl. Its bounding curve C consists of three piecewise smooth 
curves {Ci: i = 1 ,2 ,3}  having the following properties. 

(a) C, is a part of Fly2 that includes CL. 
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(b )  C, is a part of SF,, that includes CL. The instantaneous contact angle 8, is 
restricted to the range 0 < O1 < T. 

( c )  C, is any single-valued smooth curve joining those end points of Cl and C, 
that are not on CL. 

8 is the angle between the tangent to C, a t  C L  and a position vector from CL. 
The radial and azimuthal velocity components are denoted by u and v 
respectively. 

If (i) the fluid is incompressible, (ii) the motion is steady and two-dimensional, 
and (iii) the fluid velocity field is representable in a certain general form (see the 
appendix), then, for any 7 > 0, there exists an angle e,, 0 < 8 ,  < el, for which 
the integral 

is unbounded. 
The details of the representation are given in the appendix but the main 

feature to be found there is the inclusion of a discontinuity in u a t  CL. The 
necessity for such a discontinuity was shown in 5 4. 

u(r, 0)  = f(e) + q ( r ,  e) ,  ( 5 . 2 ~ )  

v(r,  0 )  = + W ?  4, (5.2 b )  

It is convenient to express u and v in the following form: 

and (5.2 a) 

Now, since u is multi-valued at  r = 0, it follows from assumption (A 8 b )  that 

f(0) *f(W. (5 .2e )  

V, and V, are subject to certain smoothness assumptions. The incompressibility 
condition 

au av 
ar ae r-+u+- = 0 

can be written in terms of representation (5.2) in the form 

av, av, g ' + f + r - + U + -  = 0. 
ar ad (5.3) 

These derivatives exist as a consequence of assumptions (A2) and (A4). If 6' is 
fixed in (0,0,) and the limit r+O is taken in (5.3), assumptions (A2) and (A9) 
guarantee the following limiting form: 

9' +f = 0, o < e < e,. (5.4) 

Since f is a t  least C(l) in [0, el] by assumptions (A 2) and (A 4), then g' is well- 
defined there as well. These assumptions, furthermore, allow a differentiation 
of (5.4): 

(5.5) 
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Consider now the expression I(?) given in (5.1). In  terms of representation 
(5.2), it becomes 

V, is assumed to be absolutely continuous in r for fixed 0, so that the Radon- 
Nikodym theorem (Riesz & Sz-Nagy 1955, p. 137) implies that 

Hence, the contribution to I (7)  due to 

is finite. Consequently, in order for the integral I(7) to beJinite for all 0 < 0% < 4, 
it is necessary that 

along a ray. By definition of V, and assumption (A 7 )  it  follows that 

f’-g+aK/aO-G = o(1) as r+O 

f’-g = 0,  O < 8 < 01, 
must hold. 

Iff’ is eliminated between (5.5) and (5.7), then 

(5.7) 

g”+g  = 0,  ( 5 . 8 ~ )  

with g(0) = g(0,) = 0. (5.8 b )  

This last expression is merely the alternative form of assumption (A 8a) .  As long 
as 0 6 0 < 0, < n the only solution of system (5.8) is 

and so through (5.4), 

However, this contradicts the multi-valuedness (5.2e) of the u velocity com- 
ponent. Hence there must existan angle 0*,0 < 0, < e,, in which I (7)  is 
unbounded for any 7 > 0. 

If it could be proved that all solutions to the Navier-Stokes equations must 
possess velocity fields with the structure described, then one would know for 
Newtonian fluids that the following statements are physically incompatible 
because they give rise to infinite forces: (i) the no-slip condition on the rigid 
bounding surface, (ii) the basic assumption. However, this is a formidable task. 
The less general problem of the fluid in the neighbourhood of the common line 
undergoing Stokes flow (i.e. a two-dimensional ‘slow’ motion of two incom- 
pressible Newtonian fluids) has been considered. The resulting stream functions 
which represent the velocity field obey the biharmonic equation. No assumptions 
need be made concerning the jump conditions a t  the interface. It was shown 
(Dussan V. 1972) that, if there exists a solution to the biharmonic equation in a 
finite domain containing parts of the two fluids surrounding the common line 
and if the velocity field, evaluated on the boundary of this finite domain, is 

g(0) f 0 

f(8) = 0,  0 < 0 < 0,. 
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sufficiently smooth (except a t  the common line), then at least one of the Jluids 
exerts an inJinite force on the solid bounding surface. It is the multi-valued velocity 
field a t  the common line which gives rise to the infinite force. 

6. Discussion and conclusions 
A continuum model of the kinematics of the materials near a moving common 

line has been presented. The class of motions analysed is described by the basic 
assumption. The basic assumption states that in a finite time material points on 
the fluid-fluid interface arrive at  the common line or else leave the common line 
and arrive on the fluid-fluid interface. In essence, the basic assumption is a 
formalization of the concept of 'rolling '. If points arrive a t  the common line from 
the fluid-fluid interface and then remain adhered to the solid, then the interfacial 
motion is reminiscent of a moving tractor tread. Rolling has been previously 
mentioned in the lit'erature in connexion with a bolus of mercury moving through 
a capillary tube and a drop moving down an inclined plane (Yarnold 1938; 
Schwartz, Rader & Huey 1964). However, even though it is very instructive to 
think of rolling little use has been made of these observations. 

The basic assumption sharply distinguishes the common-line region from a 
neighbourhood of a stagnation point. In  the latter case, the velocity field is 
analytic a t  the stagnation point, so that material points on the dividing stream- 
line take an infinite time to arrive there. 

It was shown that the basic assumption, together with common fluid 
mechanical assumptions, requires that the flow field must have certain properties. 
As little mechanical structure as possible was imposed on the flow near the 
common line so as to make as transparent as possible the raison d'e"tre for these 
properties. No mention need be made of the mathematical model of an interface, 
i.e. a surface of zero thickness us. a thin but finite layer. More important, no 
interfacial jump conditions are imposed. The derived properties are independent 
of such concepts as surface tension, surface viscosity or elasticity, concentration of 
surface-active material, disjoining pressures, etc. In  addition the balance of linear 
momentum is not invoked. Hence, no constitutive assumption on the fluids is 
necessary and the conclusions hold for non-Newtonian as well as Newtonian 
fluids. This might be especially important near the interfaces and common line if 
these are viewed as having finite thickness since then the properties would likely 
be non-Newtonian. 

It has been shown theoretically that at least oneJluid material surface must be 
emitted (injected) from a moving common line into (from) the interior of one of 
the displacing fluids. The fluid that constitutes these surfaces originates on the 
fluid-solid boundary and on the fluid-fluid interface. This has been shown to 
follow from the no-slip boundary condition, the basic assumption, and conserva- 
tion of mass. This also illustrates that the no-slip boundary condition is kine- 
matically compatible with a moving common line. 

It has been shown that the velocity field must be multi-valued a t  the moving 
common line. This followed directly from the basic assumption, the no-slip 
boundary condition, and the wall being considered rigid. 
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It has been shown that the integral I(7) must be unbounded for two- 
dimensional, incompressible steady flow as long as the velocity field has a certain 
amount of specified structure. The multi-valuedness at the common line is, of 
course, essential. If the fluids in question were Newtonian, I (7)  would represent 
the tangential component of the force exerted by the fluid on a plane within the 
fluid and intersecting the common line. The unboundedness of I (7)  would, then, 
imply the existence of infinite forces (this may also follow for certain classes of 
non-Newtonian fluids, e.g. Stokesian fluids). 

It is this last property that is most distressing. It strongly indicates that the 
cause of the singularities that others previously referenced have been getting in 
their solutions lies in their model and not in the fact that exact solutions were not 
obtained. The basic model must be reconsidered. What can be done to relieve the 
force singularity? It is already known that, changing the boundary conditions on 
the fluid-fluid interface will not work. One possibility is to seek a non-Newtonian 
description of the local properties of the bulk fluids near the common line. The 
integral I ( 7 )  might then represent a quantity different from the force and hence 
its unboundedness might be tolerable. The analysis makes clear that any con- 
trivance that relieves the multi-valuedness of the velocity field a t  the common 
line simultaneously relieves the singularity in I (7 ) .  Hence, any slip coefficient 
will do the job. It is therefore essential that the solutions of posed boundary-value 
problems containing slip coefficients be able to predict some measurable physical 
quantities before the imposed slip is taken as a reasonable description of the local 
boundary condition. There are a variety of possibilities (see Huh & Scriven 1971) 
for the elimination of the singularity each one of which entails detailed solutions 
of well-posed boundary-value problems. 

The authors gratefully acknowledge the support of the National Science 
Foundation, Engineering Mechanics Program through grant GK 31 794. 

Appendix. Details of assumptions of $5 

u and v are bounded in D. 
u and v are 0 3 )  in D-C(e) for any e > 0, where C(E) denotes an 

e-neighbourhood about the origin. 
For any fixed 8 in the interval [@,, @,I, the functions u and v are 

absolutely continuous functions of r (see Riesz & Sz-Nagy 1955). It can easily be 
shown that the above assumptions imply the existence of two bounded functions 
f(0) and g(8), where 

The following assumptions are made on u = u(r, 8) and v = v ( ~ ,  0). 
(A 1) 
(A2) 

(A 3) 

f(&) = lim u(r, e ) ,  g(@) = lim v(r ,  0) 
T+O r-0 
e=e* e=e’ 

for 0 < 0 < 0,. For certain geometries of D there exists the possibility that the 
functions f and g are well-defined over the closed interval 0 < 0’ < 8,. The 
functions V, = K( r ,  8 )  and V, = V,(r, 8)  are defined for all ( r ,  8) E D (0 < 0 < 8,} as 
follows : 
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(A 4) aV,/aO and al?Ja8 exist and are @)in {D - C(s)}  (0 < 8 < O,} for any E > 0. 
(A 5) The limits off and g as 8 -+ 8, and 8 --f 0 exist (finite) and are defined as 

f ( 4 ) > f ( O ) ,  s(4) and d o ) ,  where 

f(8,) = lim f(8); f(o) = lim f(8); 
e +el e+o 
ece ,  e > o  

g(8,) = lim g(8); g(8) = lim g(8). 
e+el e+o 
e<el 8<0 

(A 6) The following equalities hold 

f(8,) = lim u(r,O); f(o) = lim u(r,O); 
r+0 r+o 

( r ,e )  E c, (r,mcC* 

. . "  
e=e* e=e* 

By definition of V,, lirn V, = 0. Hence, this assumption can be written as 
-0 
8=8' 

lim aK/a8 = o for o < 8' < 8,. 
e =e' 
7-0 

Likewise, 

By definition of V,, i t  follows that 

lim aV,/a8 = o for 0 < 8' < 8,. 
e=e 
T-0, 

(A Sa)  u . n = 0 on C, and on C, not including the origin. The vector n is 
perpendicular to the tangent vectors t of the curves C, and C,. The boundary 
curves are considered smooth with well-defined tangents as r + 0 so we have that 

lim u.n= lim v 
r+O r-0 

( r .  8 )  E cl ( r ,  8 )  E 4 

and 

As a consequence of assumption (A Sa) it  follows that 

lim v = 0, lim v = 0. 
P - 4  r-0 

( r ,  8 )  E cl ( r ,  8 )  E c, 

Using assumption (A 6) an alternative form for assumption (A Sa) can be written: 

g ( 4 )  = 0, g(0) = 0. 
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This gives a discontinuous velocity a t  the common line. Using assumption (A 6) 
an alternative form for assumption (A 8 b )  can be written: 

where the geometry is restricted so that 0 < 6, < m. 

lim (.a&/&) = 0 for 0 < 0’ < 8,. 
e=e, 

It can be shown for a neighbourhood ofr = 0 on 8 = 6‘ that if aVJar is monotonic 
without bound or if a%/ar is bounded, then 

lim ( r  aK/ar) = 0 for 0 < 6’ < 6,. 

r+o 
(A 9) 
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FIGURE 2. A drop of water containing food dye is released from a hypodermic needle. The 
drop is surrounded by silicone oil (v = 10 centistolws). Tho bottom surface is Plexiglas. 

The drop ‘popped’ in less than 0.75 s. The motion picture was taken at  18 framesls. 
DUSSAN V. AND DAVIS (Fucing p .  96) 
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FICJURE 5. A drop of honey moving on R Plexiglas surface*. 
DUSSAN v. AND I)A\’IS 
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FIGURE 7.  (a) Two drops of glycerine on a bee’s wax surface. (b)  Now tliere is m e  drop, 
part of which is dyed. The arrows beneath ( e )  and (d )  indicate the direction of movement 
of the drop of glycerine. 
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FIQURE 10. The motion of a dyed piece of glycerine on the glycerine-oil interface. 
The glycerine is tho lower fluid, and the oil is the upper fluid. 

DUSSAN V. AND DAVlS 
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PI(: lTHE 11 .  Tho lower fluid and the dyrd fluid a m  composed of glycerine. The uppw titi id 
is oil. The arrowH indicate the direction of motion of the cornmori h i ( . .  

LjVSSAN V. AND DAVIS 
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FIGURE 15. The fluid-fluid interface in (a) is relatively flat, i.e. perpendicular to the page. 
In (b) and ( c )  the interface bends. The arrow in (6) points to the location of the common line 
on the front face of the container. The arrow in ( c )  points to that portion of tho fluid-fluid 
interface which is located midway between the front and back of the container. Tho portion 
of the dye facing the interface in ( c )  appears ‘fuzzy ’ owing to tho fact that  the dyc. is hent; 
consequently in ( c )  we are ohserving only its outer edgm 

DUSSAN v. AND DAVIS 
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FIGCJRE 18. Owing to the bcnd in the iriterface, m t  ran see only half of thc ‘disk’ like initial 
configuration of the dye in (a ) .  In ( b )  we begin to  see the emitted surface. Again, owing to  
the bcmd in  the fluid-fluid interface, the bottoin side of the emitted surface is quite distinct 
in (c )  a t  the location midway hetucen the front and rear’ of the container A t  positions 
closer to the front of the coritainer, tlicl emitted surface of dye looks like a dark rurtain 
rising from the bottom of the fluid-fluid interface, iti iliown in ( I )  and ( d )  


